Loss of branched O-mannosyl glycans in astrocytes accelerates remyelination.

نویسندگان

  • Kenji Kanekiyo
  • Kei-ichiro Inamori
  • Shinobu Kitazume
  • Keiko Sato
  • Jun Maeda
  • Makoto Higuchi
  • Yasuhiko Kizuka
  • Hiroaki Korekane
  • Ichiro Matsuo
  • Koichi Honke
  • Naoyuki Taniguchi
چکیده

In demyelinating diseases such as multiple sclerosis, a critical problem is failure of remyelination, which is important for protecting axons against degeneration and restoring conduction deficits. However, the underlying mechanism of demyelination/remyelination remains unclear. N-acetylglucosaminyltransferase-IX (GnT-IX; also known as GnT-Vb) is a brain-specific glycosyltransferase that catalyzes the branched formation of O-mannosyl glycan structures. O-Mannosylation of α-dystroglycan is critical for its function as an extracellular matrix receptor, but the biological significance of its branched structures, which are exclusively found in the brain, is unclear. In this study, we found that GnT-IX formed branched O-mannosyl glycans on receptor protein tyrosine phosphatase β (RPTPβ) in vivo. Since RPTPβ is thought to play a regulatory role in demyelinating diseases, GnT-IX-deficient mice were subjected to cuprizone-induced demyelination. Cuprizone feeding for 8 weeks gradually promoted demyelination in wild-type mice. In GnT-IX-deficient mice, the myelin content in the corpus callosum was reduced after 4 weeks of treatment, but markedly increased at 8 weeks, suggesting enhanced remyelination under GnT-IX deficiency. Furthermore, astrocyte activation in the corpus callosum of GnT-IX-deficient mice was significantly attenuated, and an oligodendrocyte cell lineage analysis indicated that more oligodendrocyte precursor cells differentiated into mature oligodendrocytes. Together, branched O-mannosyl glycans in the corpus callosum in the brain are a necessary component of remyelination inhibition in the cuprizone-induced demyelination model, suggesting that modulation of O-mannosyl glycans is a likely candidate for therapeutic strategies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

O-mannosylation and N-glycosylation: two coordinated mechanisms regulating the tumour suppressor functions of E-cadherin in cancer

Dysregulation of tumor suppressor protein E-cadherin is an early molecular event in cancer. O-mannosylation profile of E-cadherin is a newly-described post-translational modification crucial for its adhesive functions in homeostasis. However, the role of O-mannosyl glycans in E-cadherin-mediated cell adhesion in cancer and their interplay with N-glycans remains largely unknown. We herein demons...

متن کامل

N-Glycosylation engineering of plants for the biosynthesis of glycoproteins with bisected and branched complex N-glycans

Glycoengineering is increasingly being recognized as a powerful tool to generate recombinant glycoproteins with a customized N-glycosylation pattern. Here, we demonstrate the modulation of the plant glycosylation pathway toward the formation of human-type bisected and branched complex N-glycans. Glycoengineered Nicotiana benthamiana lacking plant-specific N-glycosylation (i.e. β1,2-xylose and c...

متن کامل

Differential glycosylation of α-dystroglycan and proteins other than α-dystroglycan by like-glycosyltransferase.

Genetic defects in like-glycosyltransferase (LARGE) cause congenital muscular dystrophy with central nervous system manifestations. The underlying molecular pathomechanism is the hypoglycosylation of α-dystroglycan (α-DG), which is evidenced by diminished immunoreactivity to IIH6C4 and VIA4-1, antibodies that recognize carbohydrate epitopes. Previous studies indicate that LARGE participates in ...

متن کامل

Protein O-mannosylation is crucial for E-cadherin-mediated cell adhesion.

In recent years protein O-mannosylation has become a focus of attention as a pathomechanism underlying severe congenital muscular dystrophies associated with neuronal migration defects. A key feature of these disorders is the lack of O-mannosyl glycans on α-dystroglycan, resulting in abnormal basement membrane formation. Additional functions of O-mannosylation are still largely unknown. Here, w...

متن کامل

UDP-N-acetylglucosamine transporter (SLC35A3) regulates biosynthesis of highly branched N-glycans and keratan sulfate.

SLC35A3 is considered the main UDP-N-acetylglucosamine transporter (NGT) in mammals. Detailed analysis of NGT is restricted because mammalian mutant cells defective in this activity have not been isolated. Therefore, using the siRNA approach, we developed and characterized several NGT-deficient mammalian cell lines. CHO, CHO-Lec8, and HeLa cells deficient in NGT activity displayed a decrease in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 33 24  شماره 

صفحات  -

تاریخ انتشار 2013